由于電源模塊應用的場合也越來越廣,應用場合錯綜復雜,電源模塊的輸入端時常會伴隨浪涌沖擊,若超過本身模塊能抗的浪涌電壓,模塊會損壞失效,導致系統的異常,為保證系統的可靠性,電源的前端防浪涌電路如何設計?
一、浪涌電壓來源
1、雷擊引起的浪涌,當發生雷擊時,通訊電路會產生感應,形成浪涌電壓或電流;
2、系統應用中負載的切換及短路故障也會引起浪涌;
3、其他設備頻繁開關機引起的高頻浪涌電壓。
據某些權威機構報道,一年之中發生的浪涌電壓超過應用電壓一倍以上的次數就高達800余次,電壓超1000V以上的就有300余次,這是一個相當大的數據,平均每天就有兩次,所以浪涌防護電路是必不可少的。
二、電源為何需要浪涌防護電路
電源模塊是系統與外部接觸、接口的,外部傳來的浪涌都經過電源模塊,所以需要浪涌防護電路。
由于電源模塊體積小,集成度高,內部的控制芯片和晶體管等器件最大耐壓和最大電流都比較極限,一個浪涌電壓過來可能就使模塊損壞失效,導致整個系統的癱瘓,即使沒有立馬損壞,器件受到應力沖擊,也會影響壽命和可靠性,所以為了保證電源模塊持續可靠的應用,一般都需要加上浪涌防護電路。電源模塊受限于體積小,很多模塊內部不能加上防浪涌電路,所以需要在模塊的外部加上防浪涌電路。
三、浪涌測試標準
電源模塊的浪涌測試標準是參照IEC61000-4-5。該標準適用于電氣和電子設備在規定的工作狀態下工作時,對由開關或雷電作用所產生的有一定危害電平的浪涌電壓的反應。該標準不對絕緣物耐高壓的能力進行試驗,也不考慮直擊雷。
該標準的試驗等級分類如下:
四、浪涌防護電路
由于電源模塊體積小,在EMC要求比較高的場合,需要增加額外的浪涌防護電路,以提升系統EMC性能,提高產品的可靠性。如圖2所示,為提高輸入級的浪涌防護能力,在外圍增加了壓敏電阻和TVS管。但圖中的電路(a)、(b)原目的是想實現兩級防護,但可能適得其反。如果(a)中MOV2的壓敏電壓和通流能力比MOV1低,在強干擾場合,MOV2可能無法承受浪涌沖擊而提前損壞,導致整個系統癱瘓。同樣的,電路(b),由于TVS響應速度比MOV快,往往是MOV未起作用,而TVS過早損壞。所以正確的接法一般是如圖(c)、(d)所示,在兩個MOV或是MOV和TVS之間接一個電感。
如圖3所示,可以在MOV和TVS之間加一個電阻,可以防止TVS先導通到損壞,而MOV還沒來得及動作;在選取R的時候要考慮R的功耗,以免R先損壞;同時可以并聯電容,吸收能量,提高抗浪涌能力;MOV和TVS的選型很關鍵,選擇適當的最大允許電壓和最大通流量很重要,這個就要參照電源模塊的輸入電壓以及浪涌試驗等級,如果電壓選擇小了后端供電不正常,選擇大了起不到保護作用,通流量選小了器件容易損壞。
選擇了一個可靠的防浪涌電路,再配上致遠三代新品,小體積、高效率、自帶短路保護的貼片產品,為你的系統保駕護航。